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Abstract 

The resuscitation of septic shock with hemodynamic 

support to increase the total circulating volume and 

cardiac output is essential in clinical rescuing. This study 

aimed to raise high-risk awareness in hemodynamic 

treatment with reinforcement learning for septic shock 

patients instead of finding the best. Retrospective data 

from 7792 septic shock patients (mortality of 24.7%) were 

used. Data were coded as multivariate discrete-time series 

up to 72 h with 4-h time steps. The medical treatments of 

interest are the sum of intravenous fluids and a maximum 

dose of vasopressors. State spaces are constructed using 

an autoencoder network. Two separate double deep Q-

Networks are trained to produce the value estimates of the 

embedded patient states administrated given treatments to 

assess the risk of transitioning to poor outcomes. Results 

reported that when we set a threshold of -0.16 for alarming 

the high-risk flag, 8.3% of treatments administered to 

nonsurvivors were alarmed 24 h before the outcome of 

death with 0.7% false alarms that misclassified the patients 

as near death. The global and individual trajectories of 

clinical variables around the first raised flag indicate the 

method’s effectiveness. This could help warn possible 

high-risk treatments and help clinicians pay more attention 

to the alarmed patients. 

 

 

1. Introduction 

Septic shock is a life-threatening condition that occurs 

when the blood pressure drops to a dangerously low level 

after a body-wide infection and is a leading cause of death 

worldwide in the intensive care unit (ICU) [1]. The shock 

status should be corrected as soon as possible to prevent 

the subsequent negative outcome [2]. The resuscitation of 

septic shock with hemodynamic support involves 

intravenous (IV) fluid infusion and the use of vasopressors, 

which help increase the total circulating volume and 

cardiac output for maintaining blood pressure [3]. 

Although the Surviving Sepsis Campaign guidelines 

recommend several goals to guide resuscitation [4], the 

best treatment strategy remains uncertain due to the great 

clinical variability in septic shock.  

Reinforcement learning (RL) aims to find an optimal 

policy that identifies the best action for each state, similar 

to clinicians’ goal to make therapeutic decisions to 

maximize patients’ good outcomes [5]. Komorowski et al. 

[6] first proposed an RL model with a discretized state 

space to suggest optimal treatment of sepsis patients in 

ICU. Subsequently, Nature Medicine [7] reported their 

further work on developing a tabular Q-learning-based RL 

model and validated its effectiveness on an independent 

database. Even though directly deploying RL into clinical 

decision-making systems and using the output treatments 

from RL for clinicians would be difficult with the 

limitations of safety and trust [8]. Therefore, enabling 

whether the treatment is secure and raising awareness of its 

high risk that might lead to poor outcomes is important.  

To address this issue, retrospective electronic health 

record (EHR) data from septic shock patients admitted to 

the ICU of the Beth Israel Medical Center (BIMC) were 

used. We apply the dead-end discovery method [9] to raise 

high-risk awareness in hemodynamic treatment with 

reinforcement learning. Sequential EHR data are coded as 

multivariate discrete-time series up to 72 h with 4-h time 

steps. The medical treatments of interest are the sum of IV 

fluids and a maximum dose of vasopressors in 4-h steps. 

The reward (+1/-1) is defined as surviving or not. Patient 

states measured by vital signs and clinical laboratory 

values are constructed using an autoencoder network. Two 

separate double deep Q-Network [10] are trained to 

produce the value estimates of the embedded patient states 

administrated given treatments to evaluate the probability 

of transitioning to poor outcomes. 

 

2. Methodology 

2.1. Patient cohorts 

Data is sourced from Medical Information Mart for 

Intensive Care database-IV (MIMIC-IV) [11], which 
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captured de-identified health information for 76,540 ICU 

stays admitted to the ICUs at BIMC between 2008 and 

2019 in Boston, MA, USA. We include septic shock 

patients fulfilling the sepsis-3 criteria [1]. Sepsis is defined 

as suspected or documented infection plus an increase in 

the Sequential Organ Failure Assessment (SOFA) score of 

2 points or more. The time event defined the sepsis onset 

is followed as [7]. After that, the time of septic shock onset 

is defined as the timestamp of requiring vasopressors to 

maintain a mean arterial pressure of 65 mmHg or greater 

after sepsis onset and serum lactate level greater than two 

mmol/L during the one day around the time. 

 

2.2. Data extraction and pre-processing 

    After determining the time onset of septic shock, we 

extract data started 24 h prior to this timestamp up to 48 h 

after, resulting in a total of 72 h data as [7] did. We use 46 

variables as described in Table 1 to represent the 

physiological state of patients. The outcome of interest is 

in-hospital mortality. We then pre-process the raw EHR 

data in the following four steps. 

(1) Step 1:  Aggregate the sequential data into 4-h time 

steps by averaging or summing when there are multiple 

measurements. 

(2) Step 2: Remove the outliers of all the numerical 

features that are not clinically plausible values according 

to a frequency histogram method. 

(3) Step 3: Impute missing data with forward-filling 

strategy, linear interpolation, and KNN imputation. 

(4) Step 4: Standardize normally distributed data. Log-

normal distributed variables are log-transformed before 

standardization. Binary data is centered on zero. 

 

Table 1. Patient variables. 

 

Category Variables 

Demographics 

(4) 

Age, Gender, Weight, Re-admission 

Vital Signs 

(11) 

SOFA, SIRS, GCS, Heart rate, 

Systolic, Mean and Diastolic blood 

pressure, Shock index, Respiratory 

rate, SpO2, Temperature 

Lab Values 

(25) 

Potassium, Sodium, Chloride, 

Glucose, BUN, Creatinine, 

Magnesium, Calcium, SGOT, 

SGPT, Total bilirubin, Hemoglobin, 

WBC, Platelets, PTT, PT, INR, pH, 

PaO2, PaCO2, Base excess, 

Bicarbonate, Lactate, FiO2, 

PaO2/FiO2 

Intake and 

Output Events 

(6) 

Fluid intake and output (4 h), Total 

output, Cumulated Balance, 

Mechanical ventilation, Max 

vasopressor dose 

2.3. Markov decision process formulation 

The Markov Decision Process (MDP) provides a 

mathematical framework for modeling the sequential 

decision-making process [12]. An MDP could be used to 

model the patient environment and trajectories. The agent 

(clinician) iteratively interacts with a State (patient 

physiological state) by performing an Action (medical 

treatments), coming to the following State, and receiving a 

reward (survival). The MDP is defined by tuple {S, A, T, 

R, γ}, with S and A being the finite set of states and actions. 

T (s’, s, a) is the transition function defining the probability 

of state st  transiting to st+1, i.e., s’, when taking action a. R 

is the reward function and γ is the discount factor. The 

patient trajectory could be simulated by {St, At, Rt, St+1}. 

Policy 𝜋(a|s) represents how an action is given at state s.  

    Given a policy 𝜋(𝑎|𝑠), the cumulative reward received 

by the trajectory 𝜏 with a length of L is return G(𝜏) = 

∑ γ𝑡𝑟(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)
𝐿−1
𝑡=0 . The goal is to maximize the 

expected return. A state-action value function 𝑄𝜋(s, a) is 

defined as the expected total return obtained from the 

initial state 𝑠 with the action 𝑎 and then executing the 

strategy 𝜋. The optimal state-treatment value function is 

defined as 𝑄∗(s, a) = maxπ 𝑄𝜋(s, a), which represents the 

maximum expected return of all trajectories. 

 

2.3.1.  State Space 

We perform an autoencoder architecture with a 

recurrent neural network to form sequential latent state 

representations of patient physiological state vectors using 

4-h time steps observations from septic shock patients.  

 

2.3.2.  Action space  

IV fluids include bonuses and background infusions of 

crystalloids, colloids, and blood products, normalized by 

tonicity. The vasopressors including norepinephrine, 

epinephrine, vasopressin, dopamine and phenylephrine are 

converted to equivalent dose of norepinephrine by the 

following equation.  

Norepinephrine equivalent = Norepinephrine + 

Epinephrine + Phenylephrine/10 + Dopamine/100 + 

Vasopressin × 2.5 

The sum of IV fluids and maximum vasopressor in 4-h 

steps is divided into per-drug quartiles and includes a 

special case of 0 represents no drug given. This result in 

the following 5×5 action space (Table 2). 

 

2.3.3. Reward formulation 

To identify the high-risk treatments that might lead to 

unavoid negative outcomes in the following ICU stays, we 

use the Dead-end discovery method proposed by Fatemi 

[9]. This method flags bad treatments rather than finding 
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the best ones through estimating an optimal policy 𝜋∗. Two 

MDPs ℳ𝐷 and ℳ𝑅 are constructed for modeling the dead 

and survival processes, respectively. Discount factor γis 

set as 1. Reward functions are defined as ℳ𝐷 returns −1 

with any transition to a negative terminal state (and zero 

with all other transitions). ℳ𝑅  returns +1 with any 

transition to a positive terminal state (zero otherwise).  

 

Table 2.  Dose for intravenous fluids and vasopressors that 

comprise the action space. 

 

Acti

-on 

IV fluids 

(mL/4 hours) 

Vasopressors 

(mcg/kg/min) 

Range Median Range Median  

1 0 0 0 0 

2 0-81 35 0-0.067 0.04 

3 81-253 146 0.067-0.140 0.10 

4 253-664 424 0.140-0.296 0.20 

5 > 664 1180 > 0.296 0.47 

 

2.4. Model training 

For the two constructed MDPs ℳ𝐷 and ℳ𝑅, 𝑄𝐷
∗  and 𝑄𝑅

∗  

are the corresponding optimal state-action value functions 

respectively. As been proved in [9], 𝑄𝐷
∗  and 𝑄𝑅

∗  could 

represent how a patient transitioning to a dead state or to a 

survival state as a result of administrating treatment a at s. 

As the reward limits, 𝑄𝐷
∗ (s, a) ∈ [−1, 0] and 𝑄𝑅

∗ (s, a) ∈
[0, 1] for all states and actions. In this case, we could set a 

threshold λ𝐷 to identify treatments that lead immediately 

to dead-ends. The dead-end could also be confirmed by 

assessing if 𝑄𝑅
∗  is smaller than the threshold λ𝑅 , i.e., an 

alarm would be raised if 𝑄𝐷 ≤ λ𝐷 and 𝑄𝑅 ≤ λ𝑅. 

We divide 80% of the cohorts for training and the 

remaining 20% for testing. The autoencoder is trained to 

form the sequential observations into the 64 dimensions of 

the state representations. After that, two separate double-

DQN neural networks [10] are used to compute 𝑄𝐷 and 𝑄𝑅 

for all treatments at the output states. The double-DQN 

network consists of two linear layers with 64 nodes. The 

first linear layer is followed by ReLU activation. The 

second layer outputs the relevant 25 actions. Adam 

optimizer was used for training with a mini-batch size of 

64 and a learning rate of 0.001. The training runs for 200 

epochs with the final model being the best one during the 

optimization process.     

 

3. Results and discussions 

A total of 7792 septic shock patients are included in this 

study, with a mortality rate of 24.7%. Nonsurvivors have a 

higher SOFA score and longer ICU length of stay 

compared with survivors, as shown in Table 3. In addition, 

nonsurvivors are administered higher doses of IV fluids 

and vasopressors obviously by the clinicians due to their 

complex conditions (Figure 1). 

 

Table 3.  Cohort statistics, variables count in the median. 

 

Patients 
Num-

ber 
SOFA 

Age 

(years) 

ICU-stay 

(days) 

Survivors 5869 6 68 3.6 

Nonsurvivors 1923 9 69 4.5 

 

 
 

Figure 1. Clinician treatment action counts for survivors 

and nonsurvivors. 

 

After optimizing the threshold λ𝐷 and λ𝑅 for balancing 

the true alerts and the false alarms on the test cohorts (1169 

survivors, 390 nonsurvivors), we set λ𝐷= -0.16, λ𝑅= 0.84 

for raising high-risk flags. In this case, 8.3% of treatments 

administered to nonsurvivors are identified as high risk 24 

h prior to the outcome of death with 0.7% false alarms that 

misclassify the patients as near death (Table 4). 

 

Table 4. The proportion of the identified high-risk 

administered treatments X hours before the terminal. 

 

Time (h) -72 -48 -24 -12 -8 -4 

Survivors  

(%) 
0.3 1.0 0.7 1.9 1.4 2.1 

Nonsurvivor

-s (%) 
0.0 4.5 8.3 13.6 19.5 29.7 

 

The trajectories (32 h, 8 steps) of clinical variables and 

Q values are shown around the first raised flag (Figure 2). 

A clear turning point of deterioration can be seen at the 

timestamp of the raised flag for most variables, such as 

Calcium, Glucose, SpO2, and Shock_Index. For 

nonsurvivors, the Q values got more decreased after the 

flag compared with survivors meaning the possible higher 

risks resulting from the administrated treatments, which 

should catch the attention. 

The individual trajectory of a nonsurvivor is shown in 

Figure 3. A high dose of vasopressor is given at time step 

9 to avoid the blood pressure dropping to a dangerously 

low level. However, heart rate, Calcium, SGOT, SOFA, 

and Shock_Index then start to deteriorate rapidly. 

Meanwhile, the risk begins to trigger the threshold for 

alarm. This result indicates the effectiveness of the method 

that could warn possible high-risk treatment. 
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Figure 2. Average trajectories of clinical variables and Q 

values around the first raised high-risk flag. Blue lines 

represent nonsurvivors, while green lines indicate 

survivors. Shaded areas indicate the standard deviation. 

 

 

 
 

Figure 3. The individual trajectory of a nonsurvivor. 

Yellow shaded areas indicate the alarming high-risk 

periods of time. 

 

4.  Conclusions 

This study aimed to raise high-risk awareness in 

hemodynamic treatment with reinforcement learning for 

septic shock patients. Quantitative and qualitative results 

show it could help warn possible high-risk treatments and 

help clinicians pay more attention to the alarmed patients. 
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